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Bounded solutions to the Euler equations

Let u0 be a divergence-free vector field in L∞(R2) having bounded
vorticity. It is shown (more-or-less) by Serfati in 1995 (made precise by
Ambrose, K, Lopes Filho, Nussenzveig Lopes 2013) that there exists a
unique solution, u, to the Euler equations such that:

u ∈ C([0,T ]; L∞) is divergence-free, ω := curl u ∈ L∞([0,T ]×R2);
∂tω + u · ∇ω = 0 as distributions;
vorticity, ω, is transported by the classical flow map.
For any radially symmetric, smooth, compactly supported cutoff
function a with a = 1 in a neighborhood of the origin, we have

uj(t)− (u0)j = (aK j) ∗ (ω(t)− ω0)

−
∫ t

0

(
∇∇⊥

[
(1− a)K j

])
∗·(u ⊗ u)(s) ds.

Goal 1: Remove the need for this strange identity.



2D Euler: a disturbing example

Let U∞ be an arbitrary, smooth vector-valued function of time and set

u(t ,x) = U∞(t), p(t ,x) = −U ′
∞(t) · x .

Then div u = 0 and

∂tu + u · ∇u +∇p = U ′
∞(t)− U ′

∞(t) = 0,

so (u,p) satisfy 2D Euler (and Navier-Stokes).

But,

u(t , x) = U∞(0), p(t , x) = 0

solve the same equations with the same initial velocity, U∞(0).

Jun Kato [2003]: this example shows that that the behavior at infinity of
the pressure must be constrained (to sublinear growth in his case) to
insure uniqueness of [Euler or] Navier-Stokes.



The two examples are actually the same

Change to an accelerated frame of reference by the transformation,

x = x(t , x) = x +

∫ t

0
U∞(s) ds,

u(t , x) = u(t , x)− U∞(t), p(t , x) = p(t , x) + U ′
∞(t) · x .

(This is a Galilean transformation when U∞ is constant in time.)

One can show that this transforms the first of the two solutions into the
second solution—in the transformed frame. In some sense, then, the
first solution is expressed in an accelerated reference frame, while the
second is expressed in an inertial frame.



Satisfying Goal 1

To satisfy Goal 1, we will show that any solution to the Euler equations
satisfying our first three, natural, criteria must satisfy the fourth (ugly
identity) after possibly being translated to an inertial frame.

The low regularity of our solutions is mostly just a troublesome
technical issue; the key issue is the lack of decay of the solutions.



Goal 2

Serfati 1995 claims that his uniqueness criteria is sublinear growth of
the pressure, but that is not what he (more-or-less) proves. Taniuchi,
Tashiro, and Yoneda 2010 do use sublinear growth of the pressure as
their criteria, but it is not immediately clear, then, that their solutions
are the same as Serfati’s.

Goal 2: Obtain properties of the pressure for bounded solutions and
show that sublinear growth yields the solutions of Serfati’s: that is,
show that sublinear growth of the pressure selects for the inertial
frame. In addition, show that Serfati’s and Taniuchi’s solutions are the
same.



Goal 3

Goal 3: Accomplish as much as possible of Goals 1 and 2 for an
exterior domain (specifically, the exterior to a single obstacle).

We will find no simple change of variables that will eliminate the
pressure for an exterior domain: there is no preferred reference frame.

I will focus on discussing Goals 1 and 2.



Decaying vorticity

Consider, first, the case of compactly supported vorticity, ω. We know
that the Biot-Savart law,

v = K ∗ ω, K (x) =
1

2π
x⊥

|x |2
=

1
2π

(−x2, x1)

|x |2
,

gives a divergence-free vector field, v , whose vorticity is ω. Moreover,
v decays to zero at infinity.

If u is the actual solution having vorticity ω then u and v have the
same divergence and same vorticity. As long as they are tempered
distributions, it follows that they differ by an harmonic polynomial.
Since velocity is to be bounded and continuous, it follows that

u = U∞(t) + K ∗ ω

for some U∞ ∈ C([0,T ])2. (And so the velocity at infinity can be made
well-defined for compactly supported vorticity.)



Reliance on the Biot-Savart law

This argument never used the Euler equations themselves, but relied
totally upon the ready availability of a method for recovering a velocity
from the vorticity. For non-decaying vorticity this ready method is lost.

We need a replacement.

Define the Serfati space,

S = S(R2) =
{

u ∈ (L∞(Ω))2 : div u = 0, ω(u) ∈ L∞
}
,

‖u‖S = ‖u‖L∞ + ‖ω(u)‖L∞ .

For u ∈ S, K ∗ ω does not exist as an absolutely convergent integral. If
we cutoff K , however, we would obtain an absolutely convergent
integral. This leads us to examine the sequence, ( (aRK ) ∗ ω(u) )∞R=1,
where aR is a cutoff function with increasing support.



Renormalized Biot-Savart law

Let a be a radially symmetric, smooth, compactly supported function
with a = 1 in a neighborhood of the origin. We will refer to such a
function simply as a radial cutoff function. For any R > 0 we define

aR(·) = a(·/R).

We will find that:

Proposition (Renormalized Biot-Savart law)
For any u ∈ S there exists a constant vector field, H, and a
subsequence, (Rk ), Rk →∞, such that

u = H + lim
k→∞

(aRk K ) ∗ ω(u),

convergence being uniform on compact subsets.

Radial symmetry of a simplifies proofs, but is not essential.



Characterization of 2D Euler in the full plane

Theorem
Let u be a solution to Euler in the full plane. There exists a continuous
vector-valued function of time, U∞, with U∞(0) = 0, for which

u(t ,x)− u(0,x) = U∞(t) + lim
R→∞

(aRK ) ∗ (ω(t)− ω(0))(x).

There exists a pressure, p, for which ∂tu + u · ∇u +∇p = 0 as
distributions, with

∇p(t ,x) = −U ′
∞(t) + O(1),

p(t ,x) = −U ′
∞(t) · x + O(log |x |).

Moreover, given any such U∞ ∃! solution, (u,p), as above.

U ′
∞ is a distributional derivative on (0,T ).



The Serfati identity

The velocity expression,

u(t)− u(0) = U∞(t) + lim
R→∞

(aRK ) ∗ (ω(t)− ω(0)),

is the renormalized Biot-Savart law applied to ω(t)− ω(0) without the
need to take a subsequence.

We will find that this is equivalent to the Serfati identity,

u(t)− u(0) = U∞(t) + (aK ) ∗ (ω(t)− ω(0))

−
∫ t

0

(
∇∇⊥ [(1− a)K ]

)
∗·(u ⊗ u)(s) ds.

Ihis identity follows formally by applying a cutoff function to the vorticity
equation and integrating by parts. We cannot do this for a bounded
solution because of a lack of decay, but one can show that if the Serfati
identity holds for one cutoff function it holds for any other. The issue is
regularity (which we have just enough of) not lack of decay.



Outline of proof of Characterization

Highest level:

1 Characterize the velocity; that is, prove that for any solution, the
velocity expression must hold.

2 Prove existence and uniqueness of solutions, given any U∞, by
employing a sequence of smooth solutions having compact
vorticity. Requires only a slight modification of the proof in
Ambrose, K, Nussenzveig Lopes, Lopes Filho, which we refer to
as AKLL.

3 Prove that the solutions constructed in step 2 satisfy the pressure
relations by taking a limit for the approximating sequence.



Characterization of velocity

Let u be a solution to 2D Euler in the full plane.
1 Show that the Serfati identity,

u(t)− u(0) = U∞(t) + (aK ) ∗ (ω(t)− ω(0))

−
∫ t

0

(
∇∇⊥ [(1− a)K ]

)
∗·(u ⊗ u)(s) ds,

implies the velocity expression,
u(t)− u(0) = U∞(t) + lim

R→∞
(aRK ) ∗ (ω(t)− ω(0)).

2 Conversely, show that if the velocity expression holds for a
subsequence (which is allowed to vary with time) then the Serfati
identity holds.

3 Prove that the renormalized Biot-Savart law holds ∀ v ∈ S.
4 Let v = u(t)− u0. Then the velocity expression holds for a

subsequence by step 3, so the Serfati identity holds by step 2, so
the velocity expression holds for the full sequence by Step 1.



Renormalized Biot-Savart law

Proposition (Renormalized Biot-Savart law)
For any u ∈ S there exists a constant vector field, H, and a
subsequence, (Rk ), Rk →∞, such that

u = H + lim
k→∞

(aRk K ) ∗ ω(u),

convergence being uniform on compact subsets.

The proof involves finding just enough compactness to obtain a
convergent subsequence.



The pressure

The velocities of the approximate sequence of solutions decay
sufficiently rapidly at infinity, so we can relatively easily deal with their
associated pressures. Then, we take a limit and show that the bounds
we obtain hold in the limit.

There are two key ideas in bounding the pressures for the approximate
solutions. First is an identity from a 1995 paper of Serfati:

∇p(x) = −U ′
∞ +

∫
R2

a(x − y)K⊥(x − y) div div(u ⊗ u)(y) dy

+

∫
R2

(u ⊗ u)(y) · ∇y∇y

[
(1− a(x − y))K⊥(x − y)

]
dy .

But, div div(u ⊗ u) = ∇u · (∇u)T ∈ Lp for all p ∈ [1,∞) while

aK ∈ Lq for all q ∈ [1,2) , and ∇∇ [(1− a)K ] ∈ L1 while

u ⊗ u ∈ L∞ can be used to show that ∇p + U ′
∞ ∈ L∞([0,T ]× Ω) .
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Dini MOC

The second key idea never introduces a cutoff function. Instead, one
writes the pressure as a Riesz transform of u ⊗ u. To describe it, we
need a definition.

Definition

A nondecreasing continuous function, µ : [0,∞)→ [0,∞), is a
modulus of continuity (MOC) if µ(0) = 0 and µ > 0 on (0,∞). Given a
MOC, µ, we define,

Sµ(x) =

∫ x

0

µ(r)

r
dr .

We say that µ is Dini if Sµ is finite for some (and hence all) x > 0.



Using a Riesz transform

The following lemma is as in Kiselev, Nazarov, Volberg [2007]. (This
type of bound goes back to Burch [1978] for a singular integral
operator in a bounded domain.)

Lemma

Let R be any Riesz transform. Suppose that h lying in Lp(R2) for some
p in [1,∞) has a concave Dini MOC, µ. Then Rh has a MOC,

ν(r) = C
(

Sµ(r) + r
∫ ∞

r

µ(s)

s2 ds
)

for some absolute constant, C. (Note that this MOC holds for all r > 0.)

Then p = R(u ⊗ u), and u ⊗ u Has a log-Lipschitz MOC. The resulting
MOC, ν, can be used to control p asymptotically in |x | by fixing the
value of p at one point. The resulting bound is C log |x | for large x .



The exterior to a single obstacle

Letting Ω be the exterior to a single, connected and simply connected
obstacle with C2,α boundary, we obtain analogous results.

Theorem
Let u be a solution to Euler in the full plane. There exists a continuous
harmonic vector field, U, with U = 0 at time zero, and a pressure, p, for
which

u(t , x)− u0(x) = U(t , x) + lim
R→∞

∫
Ω

aR(x − y)JΩ(x , y)ω(y) dy ,

∇p(t , x) = −∂tU(t , x) + O(1),

p(t , x) = −∂tζ(t , x) + O(log |x |).

Here, JΩ is the hydrodynamic Biot-Savart kernel and U is defined
uniquely by its value, U∞, at infinity and its circulation, γ, about the
boundary. The vector field, ζ, and so the pressure is multi-valued
(unless γ = 0) with ∇ζ = U.



Difficulties with an exterior domain

The proofs are much more technical because:
The Biot-Savart kernel is replaced with KΩ = ∇⊥GΩ, where GΩ is
the Green’s function for the Dirichlet Laplacian on Ω.
Convolutions are now integrals, so switching the derivatives
between terms of a convolution becomes integration by parts.
Because aRK is no longer a compactly supported distribution,
these need to be justified.
The estimates on KΩ are no longer immediate and are quite
involved. Fortunately, the estimates were done in AKLL.
We must strengthen the definition of a solution somewhat to allow
integration by parts in the proof that the Serfati identity is
independent of the cutoff function.



Handling pressure in an exterior domain

The equation for the pressure involves Neumann boundary
conditions. We define a Neumann function NΩ (Green’s function
of the second kind) for Ω and obtain interior elliptic regularity
estimates using it to replace the Riesz transform approach in the
full plane.
Fortunately, the estimates on KΩ in AKLL can be used to obtain
many of the necessary estimates on NΩ.
A recent paper by Nardi on elliptic regularity with Neumann
boundary conditions in a bounded domain is also helpful.



Related work: Existence

I have mentioned the work of AKLL, upon which I have built.

In the full plane, Taniuchi [2004] constructs bounded solutions (actually,
“slightly unbounded” vorticity, a localized version of Yudovich [1995]):

Uses a mild-solution formulation of the Euler equations.
For his solutions, U∞ ≡ 0.
He employs an approximate sequence of smooth solutions with
non-decaying vorticity coming from another 1995 paper of Serfati.
Uses Littewood-Paley decompositions but no paradifferential
calculus.
Approach would not extend to an exterior domain because the
existence of smooth solutions in an exterior domain having
non-decaying vorticity is not known.



Related work: Uniqueness

In the full plane, Taniuchi, Tashiro, and Yoneda [2010] (TTY2010)
establish uniqueness of the solutions constructed in Taniuchi [2004]:

The selection criteria for uniqueness is the sublinear growth of
pressure at infinity.
Employs paradifferential calculus, with an approach to uniqueness
(actually, a type of continuous dependence on initial data) adapted
from Vishik 1999.
Does not assume vorticity is transported by the flow map.
The solutions constructed in AKLL are also mild solutions.
Because we know that AKLL-solutions have sublinear growth of
the pressure, the uniqueness result in TTY2010 implies that the
bounded solutions in Taniuchi [2004] and AKLL are the same.
In particular, vorticity is transported by the flow map for Taniuchi’s
solutions.



Thank you

And thank NSF grants DMS-1212141 and DMS-1009545 for being
there.


	Introduction

